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The propulsion by large amplitude waves of uniflagellar 
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The fluid mechanics of self-propelling, slender uniflagellar micro-organisms is examined 
theoretically. The mathematical analysis of these motions is based upon the Stokes 
equations, and the body is represented by a continuous distribution of stokeslets and 
doublets of undetermined strength. Since the body is self-propelling, additional 
constraints on the total force and moment upon it are applied. A system of singular 
integral and auxiliary equations, in which the propulsive velocity and viscous force 
per unit length are the unknowns, is derived. The vector integral equation is decom- 
posed into near- and far-field contributions, and the solution is determined by a 
straightforward iterative procedure. The flagella considered are of constant radius 
and are restricted to planar undulations. The analysis is applied to a small amplitude 
wave form of infinite length, and a third-order analytic solution is obtained. By means 
of numerical computation, the method is extended to large amplitude wave forms of 
both infinite and finite length. The validity and accuracy of the solution method, the 
effect of local curvature, and an approximate model for an attached cell body-proper 
are evaluated in light of alternative theories. 

The solution method is systematically applied to a variety of wave-form shapes 
representative of actual flagella. For a sinusoidal wave form, the variations in propulsive 
velocity, power output and propulsive efficiency are examined as functions of the 
number of wavelengths on the flagellum, the amplitude and the flagellar radius. Wave 
forms of variable amplitude and variable wavelength are also considered. Among the 
significant results are the effect of the cell body on pitching, the significant differences 
between constant frequency and constant phase-speed undulations for variable wave- 
length wave forms, and comparisons with other pertinent theories. 

1. Introduction 
Mathematical description of the hydrodynamics of swimming uniflagellar micro- 

organisms began with Taylor (1951), who modelled the body surface as an infinite two- 
dimensional sheet. Shortly thereafter, Taylor (1952) and Hancock (1953) considered 
a more realistic morphological model, in which the body consisted of a circular cylinder 
of very large aspect ratio. Hancock’s analysis contains two features of particular 
importance. In defining a fundamental singularity, or stokeslet, as a solution to the 
Stokes equations, he helped lay the groundwork for contemporary slender-body theory 
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at low Reypolds number. Moreover, he considered a body whose surface undulations 
consist of travelling waves of finite amplitude in compzrison to wavelength. Such 
finite-amplitude undulations are characteristic of a great majority of uniflagellar 
micro-organisms, including bacteria, protozoa and spermatozoa. Hancock’s method 
employs a distribution of stokeslets and potential doublets along the centre-line of a 
flagellum of effectively infinite length, in a manner analogous to slender airfoil theory. 
Solution of the gorerning integral equations was performed by Fourier analysis. Based 
on Hancock’s earlier analysis Gray & Hancock (1955) introduced a simplified, approxi- 
mate method, intended for widespread practical use. In their method, subsequently 
referred to as resistive force theory, hydrodynamic interactions between neighbouring 
elements of a flagellum are neglected. A constant tensorial relationship links local 
forces on a flagellar cross-section to the absolute velocity of that cross-section. The cell 
body-proper or head of the organism was analogously treated by Gray & Hancock as 
an isolated sphere. Since intraflagellar interactions are neglected, resistive force theory 
is thus only strictly valid in the limit of infinitely thin flagella. Nonetheless, this 
approach has received broad application during the past 20 years (e.g. Chwang & Wu 
1971; Holwill & Miles 1971; Brokaw 1970; Pironneau & Katz 1974). Notably, it  was in 
the application of resistive force theory that the proper balancing of longitudinal 
moments on a finite organism was formulated (Brokaw 1970). Improved expressions 
for the coefficients of the resistive force tensor have been developed by Lighthill ( 1  975, 
1976). His analyses were also based upon distribution of singularities along the 
centre-line of the flagellum, and account was taken of intraflagellar hydrodynamic 
interactions. 

Other approaches have also been developed for the flagellar swimming problem. 
Recently Johnson (1 977) has introduced higher-order singularities to the centre-line 
distribution to more accurately include the effects of local curvature. Johnson, how- 
ever, did not consider a free-swimming body, but rather the force distribution due to 
an arbitrary unidirectional translation of the organism. A technique formulated by 
Cox (1970) for rigid slender bodies has been applied to flagella undergoing finite- 
amplitude undulations (Shen et al. 1975; Keller & Rubinow 1976). This approach 
analyses the flow field about the body by the method of matched asymptotic expan- 
sions, as developed in ascending powers of the reciprocal of the logarithm of an 
effective aspect ratio. The lowest-order application of Cox’s method (see Keller & 
Rubinow 1976) does not include interaction between neighbouring flagellar elements, 
and consequently amounts to the resistive force approximation. The first-order 
application (Shen et aZ. 1975) does include such interaction. Finally, in an altogether 
different approach, a helical flagellum has been treated as an array of contiguous 
spherical beads (Garcia de la Torre & Bloomfield 1977). The fluid velocity field is 
obtained as a function of the forces acting at each bead through Oseen-type hydro- 
dynamic interaction tensors. 

Despite these many diversified studies during the past 28 years, certain fundamental 
issues in the theory of flagellar hydrodynamics remain to  be investigated. In  particular, 
no direct treatment has yet been given for a freely-swimming flagellum of finite length 
propagating planar waves of finite amplitude. Such a treatment properly should allow 
for propulsive motions with three degrees of freedom, two in translation and one in 
rotation. Hydrodynamic interactions between neighbouring flagellar segments must 
be taken into account. An inert head a t  one end of the flagellum is involved in such 
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FIGURE 1 .  Schematic drawing of a uniflagellar micro-organism. 

interactions and influences the propulsive velocities in all three degrees of freedom. 
The present study focuses upon these as yet incompletely addressed issues. 

While perhaps not as conceptually simple as resistive force theory, the analysis 
presented here is designed to be more accurate, versatile, and not overburdened with 
extensive numerical calculations. The slender body of the organism is modelled by a 
continuous line distribution of singularities of unknown strength. A governing system 
of equations, based upon the integral equation derived by Hancock (1953) and the 
dynamical constraints introduced by Brokaw (1970) is formdated. The integral 
equation involving the unknown propulsive velocity and force distribution is decom- 
posed into near- and far-field components, and the solution is obtained by an iterative 
procedure. The validity of the model is then tested by comparing sohitZions derived 
from it with those from existing theories. It is also shown how the interactive ekect of 
a cell body attached to the flagellum may be included in the model. 

Although several theories have been proposed to describe the fluid mechanical motion 
of the micro-organisms under consideration, none has been extensively applied to the 
numerous situations of biological interest. Thus, one of the primary objectives of this 
study is to systematically exercise the model developed here as a ‘tool ’ to  investigate 
a wide range of cases. 

2. Theoretical development 
2.1. General theory 

Consider an isolated, self-propelling slender body in an unbounded fluid. The flagellum 
of the organism is modelled as an axisymmetric deformable, but inextensible filament 
of length L and radius a, with a < L (figure I ) .  The co-ordinate measured along the 
flagellum or ‘tail’ is denoted by s. A spherical cell body-proper of radius a, = O(a) 
may be attached to the proximal end of the organism (s = 0). In this model the time- 
dependent position and velocity along the body are given in a co-ordinate system 
moving with the organism. The objective of this analysis is to determine the time- 
varying velbcity of this moving co-ordinate system with respect to the stationary 
fluid a t  infinity. This velocity is interpreted as the ‘propulsive’ velocity of the micro- 
organism. Additionally, the viscous force distribution along the body is sought along 
with various derived quantities such as the power output and bending moment distri- 
bution. Movements of the organism are confined to a plane, but the method presented 
here can easily be extended to aIlow for more general motions. 

Since both the steady and unsteady (based on beat frequency) Reynolds numbers 
for the micro-organisms under consideration are of order or less, the fluid 
mechanical analysis proceeds from the linear, inertialess Stokes equations. The 
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flagellum of the micro-organism is modelled as a continuous distribution of singu- 
larities placed along its centre-line. As in several other studies (e.g. Hancock 1953; 
Batchelor 1970; Blake 1972; Lighthill 1975) only the stokeslet and doublet singu- 
larities are included in this model. An isolated stokeslet or point force located by the 
position vector r’ generates an induced velocity at  the point r given by 

u. = - Fi (*+=I 6 RiRj = FiGij (i,j = 1,2 ,3) .  
8np R 

In this equation R = r - r‘ and R = Ir - r‘l, and both position vectors are with 
respect to some convenient co-ordinate system. The strength of the stokeslet is given 
by Fi; Jii is the Kronecker delta; ,u is the absolute viscosity of the fluid; and Gij is the 
Green’s function of the stokeslet. Similarly, the velocity field of an isolated doublet is 

where Di is the doublet strength and Hij is its Green’s function. 
If the body is modelled as a continuous distribution of these singularities placed 

along its centre-line, the induced velocity on the surface of the organism is given by 

U(S) = [f(s’).G(S,S’)+d(s’).H(s,s’)]&’. so” (2.3) 

In  order to invert this equation for the unknown stokeslet and doublet strengths per 
unit length, f and d respectively, the absolute velocity of the surface u(s) must be 
specified. For a free swimming organism the absolute velocity of a point on the 
flagellum is not known a priori. Indeed the complete swimming problem requires that 
the propulsive velocity be determined simultaneously with the force distribution. This 
velocity results when the organism appropriately deforms its body shape in time, 
generally by passing periodic travelling waves down its tail in the opposite direction. 
The total, or absolute velocity, of a point s can be decomposed into a ‘beat ’ velocity 
due to tail deformations and a propulsive velocity of the whole organism, i.e. 

u(s, t )  = a(% t )  + UJt), (2.4) 

where Q is the beat velocity and Up is the propulsive velocity. The beat velocity will 
be a specified function with respect to a co-ordinate system moving with the organism: 
it is determined by taking a Lagrangian time derivative of the position vector. The 
propulsive velocity corresponds to the rigid body motion of the organism with respect 
to a fixed reference frame (i.e. the fluid at infinity); it  is the velocity of the (moving) 
co-ordinate frame in which the beat velocity is specified. The axes of the fixed CO- 

ordinate system will be denoted by X and Y and of the moving system by X and y 
(figure 2).  For general planar motion, there are three components of propulsive velocity : 
two translational, U& and Upv, and one angular, Q; therefore the total velocity, from 
(2.4), can be written as 

u(s, t )  = O(s, t )  + U,,i + Up, j + Qk A r(s, t ) .  (2.5) 

Rere i, j, and k are unit vectors parallel to the x, y, and .z axes, respectively. 
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FIGURE 2. The X, Y co-ordinate system is a fixed reference frame. The local, moving co-ordinate 
system is denoted by 2, y. The local system moves relative to the S, Y system with propulsive 
velocity U,( t ) .  In the x, y system, a point on the tail s has position r(s, t )  and velocity a(s, t ) .  

In this study two different moving co-ordinate system representations are con- 
sidered. The first co-ordinate system is applicable to wave forms of the type y = y ( ~ ,  t ) ,  
but here its use is limited to sinusoidal shapes given by 

y = bsink(x-ct), (2.6) 

where b is the amplitude, k the wavenumber and c the phase speed. The system in which 
this representation is applied will be referred to as the mean co-ordinate system, 
since the Lagrangian beat velocity is determined with respect to the mean position, 
(over a beat cycle) of the point s = 0. In  the second moving system, the wave form is 
characterized by the slope angle of the local tangent to the flagellum, a, which is a 
function of the co-ordinates s and t ,  i.e. 

a = a(s,t). (2.7) 

This wave-form specification, employed in conjunction with what will be referred to 
as the head co-ordinate system, will be used to model wave forms of more general 
shape than the mean system representation. Expressions for Q in both systems and 
further details can be found in the appendix. 

Inserting (2 .5 )  into the left-hand side of (2.3) increases the number of unknowns by 
the three scalar components of propulsive velocity. This necessitates that an equal 
number of supplementary equations be supplied. These can be obtained by considering 
the dynamics of the body itself in addition to the dynamics of the fluid. Applying 
Newton’s second law of motion, and neglecting accelerations, constraints on the total 
force and moment M on the body reduce to 

( 2 . 8 ~ )  

(2 .8b )  
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These auxilliary equations will be referred to as the equilibrium conditions. Equations 
(2.3) and (2.8) are the coupled system that determines the propulsive velocity and force 
distribution. 

Before proceeding to the next section, two of the assumptions of the analysis, one 
explicit and one implicit, are worthy of note. Since the body is slender it might be 
anticipated that the solution obtained by a line distribution of singularities would not 
differ substantially from that obtained from a surface distribution. (This latter repre- 
sentation can be shown to provide the exact solution; see Ladyzhenskaya 1969.) 
However, this is strictly true only in the case of an infinite straight slender body, or 
one for which the local axial curvature varies only slightly. This is not the case for real 
micro-organisms for which the curvature can be of O ( L )  or larger. As will be shown in 
5 3, however, the present model does not sacrifice any significant accuracy by including 
such an assumption. The effect of the body tips, located as s = 0 and s = L, while of 
interest (see, e.g., Tuck 1964, Tillett 1970; Johnson 1977), hasnot beenincluded in this 
study. Since the singularities (extending from s = 0 to s = L)  must be internal to the 
body, the actual body length is slightly longer than L and the precise tip shape is 
undet,ermined. The work of Johnson (1977) indicates that the tip effect is a t  most of 
the same order as other simplifications inherent in this analysis. 

2.2. Decomposition of the integral equation and solution method 

Since the body under consideration is slender, a reasonable simplification of (2.3) is 
to apply the velocity boundary condition on the body centre-line rather than on the 
body surface. However, the integral equation then becomes singular when r = r’. 
This difficulty can be circumvented, and the advantages of slender body theory still 
retained, if (2.3) is decomposed into two parts as follows: 

s + W  

s - ~ ( s )  
u(s) = 1 [f(s’).G(s,s’)+d(s’).H(s,s’)]ds’ 

s- S(s) +Io +ss:8(s) [ f ( d ) . G ( s , s ’ ) + d ( s ’ ) . H ( s , s ’ ) ] d s ’ .  (2.9) 

The function S(s), as yet an unspecified parameter, is assumed to lie in the range 

a < S(4  4 A, (2.10) 

where A is a measure of the distance along which the shape of organism has spacial 
periodicity (e.g., the wavelength measured along s). 

The integral constituting the first term in (2.9) contributes a ‘local’ effect to the 
total velocity ofa given point on the body. Withinthis near-field region, r 2: r’, andthe 
velocity boundary condition is evaluated on the body surface, thereby avoiding the 
singularity. It is assumed that within the limits of this integral, i.e. s - 6 6 s’ 6 s + 6, 
the singularity strengths are constant. The details involved in this assumption can be 
found in Hancock (1953, see, e.g., $2) ,  and its justification will be demonstrated 
a posteriori in $ 3. It follows that the velocity boundary condition need only be applied 
on a single cross-section of the body within the near-field region (centred a t  r = r’). In  
summary, the near-field contribution to u on the body surface is due to a straight Iine 
distribution of stokeslets and doublets. 

The second term in (2.9) represents the far-field effect of singularities outside the 
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region encompassed by the first integral. Here the simplification is made that since 
the far-field doublet contribution to the velocity at  a point on the surface is of higher 
order than the stokeslet contribution, it can be neglected (for details see Hancock 1953, 
or Lighthill 1975). In  addition, equation (2.10) and the slenderness criterion allow the 
far-field induced velocity contribution to be applied to the body centreline rather than 
the body surface, with an error of O(a2/62). These simplifications greatly reduce the 
computational effort in evaluating the far-field contribution. 

In  light of the above, (2.9) can be written as 

s + @ )  s + W  

s - N s )  8--6(5) 

u(s) = f(s) .I G(s, s‘) ds’ + d(s). H(8,s’)ds’ 

(2.11) 

The function 6(s) now is assumed to have a constant value. Since the final results are 
found to be relatively independent of the exact choice of 6, as specified within the range 
given by (2.10), this simplification appears to be justified (see tj 3). 

It remains to evaluate the integrals of the tensors G and H. In  effect, the near-field 
contribution is that of a slowly translating, right circular cylinder of radius a and 
finite length 26. The cogent analysis of Lighthill (1975) concerning this problem may be 
readily applied. The motion is first resolved into normal and longitudinal movement of 
the cylinder. For normal translation, in order to satisfy the no-slip velocity boundary 
condition on the central cross-section, both normal stokeslets and doublets are 
necessary. In  addition, the normal doublet strength per unit length is given in terms 
of the normal stokeslet strength per unit length as d N  = fNa2/4p. In  contrast, for 
longitudinal motion no doublets are needed to match the velocity boundary condition. 

In  terms of local normal and longitudinal components, the near-field contribution 
to u can then be written as 

%N = fN/cN, uL = fLlCL,  
where 

(2.12) 

( 2 . 1 3 ~ )  

c, = 4 ~ p / [ l n ( P ~ + 1 ) / ( B ~ -  l)-l/P1l. (2.13 b )  

Here pi = (1 +a2/S2)t and p2 = 2 + ~ 2 / 6 ~ p ; .  Applying (2.10) to (2.13) and dropping 
terms of O(a2/62) gives 

C, = 4np/[ln /26/a) + 0.51, (2.14 a )  

CL = 27r,u/[ln (2S/u) - 0.51. (2.14b) 

Equation (2.12) shows that the near-field velocity contribution is linearly proportional 
to the local force or stokeslet strength per unit length. The constants (for a given body) 
CN and C,, the so-called resistance’ or ‘force coefficients ’, form the basis of the low- 
Reynolds-number resistive force theory initiated by Gray & Hancock (1955).t We 
note that the use of resistance coefficients is only a zeroth-order ’ approximation for 
all but the most elementary bodies. 

We now consider the effect of an attached cell body. The no-slip velocity boundary 
Gray & Hancock (1955) assumed that C, = ~ C L  and that a non-interacting aphericd cell 

body-proper was present. They then obtained an expression for CL analogous to (2.14b) but with 
S = O(h). 
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condition must be satisfied on t’he head surface as well as on the tail. The organisms 
under consideration here have heads with an average radius a, (based on head volume 
and a spherical model) ranging up to approximately L/30. (Human sperm, for example, 
have an a,/L ratio of about 1/40; see Katz & Pedrotti (1977).) In  the following 
analysis the shape will be approximated as a sphere; but even with this simplification, 
since the flow due to a moving sphere in the presence of arbitrary boundaries (e.g., the 
body tail) is extremely complex, the problem will be solved approximately. 

As is well known, the motion of an isolated sphere can be represented by a single 
stokeslet and doublet a t  the centre of the body. The force and moment on the head, FH 
and MH respectively, can be written in terms of its absolute translational velocity uH 
and angular velocity G!, as (Happel 8: Brenner 1973) 

F H  = - CffUH’ MH = - C-vf G!, -k rH A F H ,  (2.15) 

where CH = 6npa and C-,,’= 877-p~~.  The constants C, and C,, can be thought of as 
resistance coefficients. The vector rH is the position of the centre of the sphere with 
respect to the point about which the moment is taken. Since the total velocity of the 
organism is unknown, the head will be represented by a stokeslet-doublet pair of 
unknown strength. The velocity at a point on the surface of the spherical head is com- 
posed of two contributions: a near-field effect, given by (2.15), and a far-field velocity 
due to the stokeslets distributed along the tail. Similarily the far-field velocity at  a 
point on the tail includes an additional component due to the head. Thus we allow for 
higher-order interactions between the cell body and the tail. The critical assumption 
is then made that the velocity on the head is evaluated a t  the sphere’s centre rather 
than on its surface. This slender-body-type simplification is not strictly valid for 
stokeslets distributed along roughly the proximal 10 yo of the tail. In  this range of s 
the distance from a point on the flagellum to the head centre may differ significantly 
from that to a point on the head surface. The result of the simplifications noted above 
is that the head is effectively treated as an additional tail segment with resistance 
coefficients given by CH and CAI. In  the following section, the validity of the modelling 
procedure for the head will be examined. 

For a self-propelling body with a cell body the total velocity given by (2.11) must be 
modified to account for the mutual interactive effect of the head and tail. Furthermore, 
the force and moment on the head, given by (2.15), must be added to the left-hand 
sides of the equilibrium conditions (equations ( 2 . 8 ~ )  and (2.8b)’ respectively). The 
head-tail junction is assumed to be rigid. Thus the total angular velocity of the head 
is GIH = [Q + (&/at) (s = 0,  t ) ]  k, and the position vector to the head centre is 

r, = [x(s = 0,t)-aHcosa(s = O,t ) ] i+[y(s  = 0,t)-a,sina(s = 0 , t ) l j .  (2.16) 

Combining (2 .5) ,  (2 .8) ,  (2.11), (2.15) and the above, the complete system of equations 
for the motion of the organism is 

u(s, t )  = a(& t )  + U,(t)  = f(s, t )  .c-’ 
+/o’-8 +/s:8f(s’ , t ) .G(s , t ;  s‘,t)ds’, (2.17a)t 

t For a flagellum with a head, the total velocity a t  a point on the tail includes the additional 
term [G + (ak /6p)  H .FH. Moreover, the total velocity of the head is given by 

PL 
uH = FH/CH+ Jo f(8’, t )  . G(8, t ;  s’, t )  ds‘. 
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IOLf(s', t )  d d -  FH = 0, 

IOLM(s ' ,  t )  ds' - M, = 0. 

In  equation (2.17a) 
s+ 8 a2 s+8 

C-l = Is-8 G(S, t ;  s',t)ds'+- H(S,t ;  s',t)ds', 
4PIs-8 

599 

(2.17b) 

(2.1 7 c) 

where we note that the second integral is proportional to nn. The tensor nn is the 
dyadic product of the normal (to the local body centre-line) unit vector n with itself, 
andf .nn = (f .n)n.  

2.3. Iterative solution method 
Equations (2.17) are essentially a Fredholm integral equation with auxiliary equations 
which must be satisfied simultaneously, and, with the exception of a few, quite 
restrictive cases, cannot be solved analytically. There are various standard methods 
for solving such systems. For example, Johnson (1977) chose a matrix inversion 
technique since the propulsive velocity was assumed to be unidirectional and was 
specified. In  this study an iterative approach, similar to the standard method of 
successive approximations (e.g. Hildebrand 1965) is employed. Among the advantages 
of this solution procedure are its conceptual simplicity and accommodation to both 
analysis and numerical computations. 

For convenience, the far-field velocity contribution is defined as 

6(s , t )  = + [" f (s , t ) .G(s , t ;  s',t)ds'. (2.18) 
J O  Js+8  

Then, for any time t ,  (2.17 a )  can be written 

so that 
O(s) + up = f(s) .c-1+ fi(s), 

f(s) = c . [a($) + up - fi(s)]. 

(2.19) 

(2.20) 

The iteration is initiated by solving for a 'zeroth-order ' force distribution in terms of an 
unknown zeroth-order propulsive velocity, viz. 

f@)(s) = c. [fi(s) + ugq, (2.21) 

where the superscript denotes the order of the iteration. The term fi(s) is taken to be 
zero, i.e. only the near-field effect is considered at the zeroth-order level. Substitution 
of this equation into (2.17b) and ( 2 . 1 7 ~ )  results in the following system of equations 

v.up = w. (2.22) 

The terms in V involve integrals of known functions of C and the given wave form. 
Since Up is independent of s, it factors out of the integrals of (2.17). The vector W is 
also known and is a function of a(s), C, the given wave form and the head resistance 
coefficients. Solving (2.22) for Ug), the zeroth-order force (stokeslet) distribution is 
determined by (2.21). 

A first-order force distribution is now defined by the equation 

f(')(8) = c. [a(S) -I- ug) - fi(')(S)], 
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where 

The equation for f(')(s) is substituted into the equilibrium conditions, resulting in an 
equation analogous to (2.22). This determines Ug), and the procedure can be carried 
out to  as many orders as desired. 

3. Numerical analysis and verification procedure 
In  order to  study the propulsive moments of flagellated organisms of finite length 

undergoing large-amplitude undulations, a computer program as been developed for 
the iterative solution procedure outlined in the previous section. That is, successive 
estimates of the total velocity of specific points along the flagellum were improved by 
updated far-field contributions and repeated application of the equilibrium equations. 
The program, which was run on a CDC 7600 digital computer, requires that the body 
shape, Lagrangian beat velocity, resistance coefficients, and value of 6 be known. 
Integrations along the tail (i.e. with respect to s) are performed by a Simpson's rule 
approximation. It was found that roughly fifty, equally spaced points per wave- 
length are sufficient to insure an acceptable truncation error. For periodic wave forms 
the cycle is divided into sixteen equal time steps. Since the velocity field a t  a given time 
depends only upon instantaneous values of the organism's shape and velocity distribu- 
tion, the only restriction on the incrementization of time is that it be small enough so 
that temporal averages are accurate. Convergence, based upon the criterion that the 
total velocity a t  all tail points change by less than one percent between two successive 
iterations, is achieved within approximately ten iterative cycles. For a tail of one 
wavelength, a complete beat cycle requires approximately 5 seconds of central 
processor time. 

Prior to  considering the general wave form problem, various tests were carried out 
in order to evaluate both the accuracy of the model and the validity of certain crucial 
assumptions. At the zeroth-order level the solution was checked by a calculation of 
the propulsive velocity of a small amplitude, finite length sinusoidal wave form, a 
problem solved analytically by Pironneau & Katz (1974) and Shack, Fray & Lardner 
(1974). For a non-dimensional amplitude of bk = 0.01 (this parameter will be used 
throughout to characterize sinusoidal wave forms) the calculated results agreed with 
the theory to three significant figures. For further details see Dresdner (1978). 

S Dependence 
For higher-order interactive calculations 6 must be specified. It should be noted that 
this is a direct consequence of the particular decomposition of the governing integral 
equation and iterative solution technique discussed in 9 2 .  A purely analytic approach 
would not result in dependence on a numerical parameter of this type. Heretofore the 
only restriction on S has been that expressed by f2.10). That is, the body is slender, and 
6 must be at  least an order of magnitude smaller than the local radius of curvature. 
Within these bounds the sensitivity of the numerical results to variations in S must be 
determined. The longitudinal component of propulsive velocity generally has been used 
for this evaluation since it provides a concise means for overall assessment of the 
results. 
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To aid in this investigation the iterative procedure was performed analytically, to 
third-order, for a small amplitude sinusoidal wave form of infinite length. The uni- 
directional propulsive velocity was found to be 

where y = 0.577 is Euler’s constant and bk < 1 .  
According to (3.1) the zeroth-order theory (the first term) depends only upon the 

ratio of the resistance coefficients, while the higher-order contribution depends upon 
the magnitude of these coefficients and the parameter 6. Lighthill (1975), considering 
the same geometric assumptions employed in the derivation of (3.1) obtained the 
following expression for 6 

S/h = 0.08937. ( 3 4  

The argument upon which this result is based is somewhat heuristic. However, since 
this value satisfies the criterion of (2.10), if u/L is O(O.ol), we have used it as a nominal 
value. It is of interest to note that if (3.2) is substituted into (3.1) the expression for 
U g i  reduces to the expression derived by Hancock (1953), as well as an identical one, 
obtained from zeroth-order theory into which Lighthill’s (1976) improved resistance 
coefficients have been inserted (see 5 5 ) .  

The sensitivity of UF& to variations in 6 was investigated by assuming two extreme 
values of S / h  (0.05 and 0-15) in (3.1). Between these two extremes the variation in 
Ug& was less than 3 %. Therefore for a flagellum of infinite length undergoing small 
amplitude undulations, the propulsive velocity is essentially insensitive to a reasonable 
choice of the 6 parameter. The computer program was also tested by using (3.1). For 
the nominal value of 6/h the error between theory and computation was also less than 
3 yo. In these computations the infinitely long flagellum was approximated by a finite 
length sinusoid of twenty wavelengths. The unidirectional motion was obtained by 
constraining the propulsive motions to the x direction only. In order to diminish end 
effects the single equilibrium equation was integrated over the two central wave- 
lengths rather than the complete body length. 

The sensitivity of large amplitude wave forms to variations in S was also determined. 
A finite length flagellum with a sinusoidal wave form of one wavelength (n = 1)’ 
a / L  = 0.01, and bk = 1.0 was considered. The value of 6/A was varied from 0.05 to 0.2. 
This four-fold increase in the 6 parameter produced variations in the time-averaged 
propulsive velocities in the fixed reference system (Dpx and up,,) of the order of 5 yo. 
(For large amplitude undulations the proper scaling of 6 is A rather than A;  see e.g. 
Lighthill 1976.) The fact that such an extreme variation in 6 results in a variation in 
time-averaged calculated quantities that is almost two orders of magnitude smaller, 
indicates the relative insensitivity of the solution method to this parameter. 

For large amplitude undulations the numerical calculations were compared with 
two prior analyses. Hancock (1 953) derived the same integral equation as developed 
in this study. He approximated the force distribution with a truncated Fourier series 
so that the far-field integrals could be numerically integrated with greater ease. Few 
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Propulsive velocity (U,x/c) 
A 

I \ 

a / h  Hancock (1953) Shen et al. (1975)T Present study 
0.01 - 0.20 - 0.203 ( -  0.194), - 0.200 ( - 0.187) - 0.180 
0.02 - 0.17 - 0.189 ( -  0.180), - 0.177 ( -  0.169) - 0.167 

t The range of values is discussed in $ 3 .  

TABLE 1. Large amplitude infinite length flagellum (bk = 1). 

details and no information on the accuracy of the solution method were given. In  the 
second analysis, Shen et at. (1975) extended the inert, slender body theory developed 
by Cox (1970), employing the method of matched asymptotic expansions, to an 
infinite, self-propelling flagellum. Comparison with these earlier results has been made 
for two sinusoidal wave forms with bk = 1.0 and aspect ratios of a / h  = 0.01 and 
a/h = 0.02 and is shown in table 1. For each radius there are four values of Up, for 
Shen et al., since their analysis resulted in two values for CN/CL of equal accuracy. Shen 
et al. approximated certain elliptic integrals [their equation (39)] in order to simplify 
their computations. The numbers in parentheses are the corresponding values that 
result when more accurate expressions for these integrals are employed. For the 
iterative solution method a value of 0.08937 for 8/A was used. (For a/h = 0.01, 
&/A = 0.05 was also tested with no appreciable change in results.) The comparison for 
alh = 0.01 showsa 10 % variance with Hancock and a range of from four to 12 % with 
Shen et al. The results for a/h = 0.02 exhibit only a 2 yo difference with Hancock and 
between a 2 and 14 yo variation with Shen et al. These comparative results show good 
correlations between the three solution methods. Moreover, since a reasonable varia- 
tion in 8 did not effect the results, the Lighthill value of 0.08937 appears to be an 
adequate estimate (until a more precise value or s dependence is determined) for large 
amplitude wave forms. 

Local curvature effects 
The assumption that local curvature effects are small permitted the near-field contri- 
bution to be modelled by a straight, circular cylinder. To test the validity of this 
assumption, comparison with accurate results for a curved slender body is necessary. 
As a basis for evaluation a torus was chosen, with radius equal to the minimum local 
radius of curvature ona sine wave with bk = 1.0 and a/h = 0.01. Resistance coefficients 
and the total force were calculated, via the computer program, for such a torus’ 
translating in a direction perpendicular to its longitudinal axis. Although the exact 
solution to this problem is not yet available, Johnson (1977) developed formulae for 
these quantities which are valid, to order (a/L)2, in the range of curvature typically 
displayed by flagella. The comparison showed that the normal resistance coefficient 
CN varied by less than 5 %, while C,, C,/C,, and the total drag on the torus differed by 
less than three per cent. The variance in these quantities is judged to be quite 
acceptable, especially since the radius of curvature considered is an extreme value for 
flagella. 
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Head effect 
To test the accuracy of the approximate head analysis presented in 5 2, the special 
case of axisymmetric Stokes flow about a sphere attached to a straight slender body 
(de Mestre & Katz 1974) was employed. For this problem the total drag on the body 
and the singularity distribution along the slender tail are readily obtained by the 
method of images. The approximate representation described here was compared 
to the theoretical results of de Mestre & Katz for a body with a,/L = 1/36 and 
a / L  = 0.01. The drag on the total body was calculated and found to underestimate 
the theoretical value by less than 6 yo. The force distribution on the tail was quali- 
tatively very similar to that shown in figure 5 of de Mestre & Katz. (The distribution 
very near the sphere, however, showed considerable variance due to the velocity 
boundary-condition simplification discussed in $ 2 . )  If the sphere and tail are con- 
sidered as non-interacting bodies, the combined drag on the body is given by the sum 
of the separate drag contributions. In  this case the sphere drag is given by (2.15) and 
the tail drag may be found from (7.10) and ( 7 . 1 2 4  of Cox (1970). For the body under 
consideration the total drag of the non-interacting head-tail system overestimates the 
theoretical result by slightly over 10 yo. Inasmuch as an exact theory for the general 
case is highly complex, and since the approximate head effect method is both easy to 
apply and considerably more accurate than the non-interacting model, the technique 
presented here has been incorporated into the solution procedure. 

4. Results and discussion 
The fluid mechanical model presented in $ 2  has been applied to essentially two 

types of studies. The first group was concerned with the systematic variation of wave- 
form parameters of an archetypal micro-organism. This ‘archetype ’ consisted of a 
headless, sinitsoidal travelling wave with bk = 1,  one wavelength (n  = l),  and aspect 
ratio (a /L)  of 0.01. Such a configuration was chosen for both its conceptual simplicity 
and its approximate physiological and morphological attributes; it  does not necessarily 
represent any particular organism or cell. Importantly, comparison with alternative 
theories was facilitated by this choice. The second group of studies involved the self- 
propulsion of flagellar shapes which are more physiologically accurate. These wave 
forms are characterized by an aperiodic amplitude envelope, and in some instances an 
s-dependent wavelength. 

Since the propulsive velocity is determined in the local co-ordinate system, the 
absolute propulsive velocity of the organism is determined by resolving the trans- 
lational components of U p  into the fixed co-ordinate system; thus 

Up,  = Up, cos 6 - Up, sin 6, 
up, = up,sine+up,cose. 

e(t) = sz(t+w ( q o )  0). 

In  the expression above 6, the pitching angle, is given by 

1: 
When the mean system representation is employed quantities are non-dimensionalized 
by c ,  p, and h (or k). These parameters are chosen for convenience and for purposes of 
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FIQURE 3. Temporal variation of (a)  UDx/c,  (b )  U,,,/c and (c) 0 for a headless flagellum of shape 
given by y = b sin k ( x - c t )  with blc = 1, n = 1 and a / L  = 0.01 over a beat cycle. 

comparison with other theories. In  the head co-ordinate system, with its s-dependent 
a-generated wave, the length scale is more suitably taken as L. From an experimental 
point of view, the beat frequency f is usually easier to obtain than c ,  suggesting an 
alternative velocity scale, f L.-/ Inasmuch as different non-dimensionalizations may be 
more appropriate for different experimental circumstances, various non-dimensionali- 
zations have been utilized. 

In  addition to the propulsive velocity and force distribution, other quantities are of 
interest. Among these are the rate of external hydro-mechanical energy production or 
power expended by the micro-organism in propelling itself through the fluid (g), 
given by 

B = f(s’). ~ ( 8 ’ )  ds’ + F, . U H  + M ,  . S 2 H ,  s,” 
and the local bending moment with respect to the point s = 0 (Ms), given by 

MB(s )  = -1; [r(s’) - r(s)] A f(8’) ds’+ M H .  

Effective resistance coefficients a t  a point on the body have been defined for normal 
(CL) and longitudinal ((2:) translation. These are the ratio of a component of the force 
per unit length to its corresponding component of the total velocity, both taken at the 
final iteration. Also of interest is a cycle-averaged dimensionless propulsive efficiency 
for the organism. Traditionally, this has been defined in a form analogous to 

= pLD&/Z, (4.la) 

t To conform with standard use, the symbol f denotes frequency while the symbol f denotes 
the viscous force per unit length on the fluid. 
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FIGURE 4. Spacial variation of f N ,  fL, c ~ ,  CL and MB for a headless flagellum of 
shape given by y = b sin bx with bb = 1 ,  n = 1 and a/L = 0.01. 

where the over-bar denotes cycle-averages (see, e.g. Pironneau & Katz 1974; Lighthill 
1975). An additional propulsive parameter is 

K = PfL2lq&, (4 . lb)  

which can be interpreted as the straight-line distance travelled in the fixed co-ordinate 
system per unit of mechanical energy expended. 

Sinusoidal wave forms 

The time-varying values of selected propulsive quantities for the archetypal wave 
form are shown in figure 3. In  the fixed system the translational velocities are periodic 
with the wave form but asymmetric in form. The change in sign of C L x  indicates that 
during part of the cycle the origin of the moving co-ordinate system moves in the same 
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direction as the travelling wave. (Quantities written without non-dimensionalization 
refer to the generic quantity.) In general the temporal variations of the three com- 
ponents of velocity in the moving co-ordinate system are similar to those derived 
using zeroth-order small amplitude theory (Pironneau & Katz 1974). However, Up, 
displays a moderately small asymmetry, not present a t  zeroth-order, which is due to 
the far-field contribution. The non-zero value of Dpy results in a moderate bias in the 
translation of the organism in a direction transverse to its 'propulsive axis'. Thus the 
total translational propulsive speed is actually given by ( D i x  + Dir)4. However, for 
sinusoidal wave forms the difference in value between this expression and DPx was 
a t  worst equal to 6 % (for a flagellum with approximately one wavelength), and in 
most cases was less than 2 %. For the more accurate wave forms considered below, in 
all cases the difference was less than 1 yo owing to minimal pitching. The power out- 
put varies in phase with Up, with a peak-to-peak variation equal to 128 % of the mean 
value (z/,m2A = 1.47). 

The force distribution on the tail, effective resistance cci&cients, and bending 
moment on the tail for the archetypal wave form at t = 0 are shown in figure 4. These 
plots are representative of the spatial variation of these quantities throughout the beat 
cycle. The normal component of force is approximately + 90" out of phase with the 
wave-form, although the variation of f N  is only approximately sinusoidal in shape. It 
has a period equal to that of the wave form, and changes sign during the second half 
of the cycle. The longitudinal force per unit length is relatively constant throughout 
the beat cycle, and is periodic with half the period of the sine wave form. The normal 
and longitudinal effective resistance coefficients are both fairly constant in space and 
time. The spikes in C& generally occur a t  points on the tail where the normal absolute 
velocity is very small (usually a t  extrema of the wave form). The spatial averages of 
CN/p,  cL /p ,  and their ratio Ch/CL, are 3-62,2.44, and 1.52 respectively. This ratio lies 
midway between the zeroth-order ratio, 1.41 [equation (2.14)] and 1.70 obtained from 
Lighthill's (1976) improved coefficients with 6/A = 0.08937 (see 4 5).  The bending 
moment, also shown in figure 4, displays a temporal variation similar to f N .  The 
spatial and temporal variations of the force per unit length, effective resistance 
coefficients, and bending moment for n = 1.5 (blc = 1 and a / L  = 0.01) all exhibit the 
same qualitative behaviour as for the n = 1 case. 

The number of wavelengths on a sinusoidal wave form with bk = 1 and a / L  = 0.01 
was varied from 0.75 to 2.0. Flagella both with and without an attached head 
(a,/L = 2%) were considered. When the phase speed is used for scaling purposes an 
increase in the number of wavelengths represents the change due to an addition t o  the 
length of the tail, since the wavelength and amplitude are fixed. If the combination f L 
is used to non-dimensionalize the velocity, all tail lengths are the same; an addition to 
the number of wavelengths pushes the peaks of the sinusoid closer together while 
simultaneously decreasing the amplitude, bk remaining unchanged. The non-dimen- 
sionalization involving the tail length is most appropriate in considering the effect of 
the variation of a wave-form parameter on an individual organism. For example, if it 
is of interest to determine the number of wavelengths at  which a particular organism 
( L  = constant) attains its maximum propulsive velocity, then the proper velocity 
scale is f L since h varies as n changes. 

Figure 5 shows the variation of upz with n, the number of wavelengths. (Since the 
cycle average of Dpy is always zero when the frequency is constant, it  is not shown.) 
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FIGURE 5. Time-averaged x component of propulsive velocity (up,,) in the mean system as a 
function of the number of wavelengths for a flagellum with a head, with a non-interacting head 
and without a head. The shape is given by y = b sin k ( x -  ct)  with bk = 1 and a / L  = 0.01. 
-, U J c ;  - - -, U J f L .  A, no head; 0, head; 0, non-interacting head. 
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FIGURE 6. Time averaged X-component of propulsive velocity (uDpx) in the fixed system as a 
function of the nuniber of wavelengths for a flagellum with a head, with a non-interacting head 
and without a head. The shape is given by y = b sink(x-ct) with bb = 1 and a f L  = 0.01. 
---, u*x/c; - - -. Onx f c .  Symbols as in figure 5. 

It appears that, at  least in the moving system, certain wavelengths are favoured. This 
is especially apparent in the plot of upz/c where for the headless flagellum n = 1.5 
appears to represent a local maximum, while n = 1 and n = 2 are local minima. (In 
the figures, the absolute value of the velocity components is shown.) It is assumed that 
n = 2 approximates a minimum since as n approaches infinity, the pitching effect 
rapidly diminishes and cp.Jc must rise to its limiting value of 0.180 (table 1). 

The velocities in the fixed reference frame are displayed in figure 6. Here again the 
variation in Upx shows marked maxima a t  particular Wavelengths. However, within 
this range of n there is only a single preferred value-in the region betxreen P O  and 
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FIGURE 7. Absolute value of the maximum pitching angle as a function of the number of 
the wavelengths for a flagellum, with a head, with a non-interacting head and without a head. 
The shape is given by y = b sin k(a:-ct) with bk = 1 and a/L = 0.01. Symbols as in figure 5.  
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FIQWRE 8. Time-averaged power output (&) and propulsive efficiency (7) as functions of the 
number of wavelengths for a headless flagellum of shape given by y = b sin k(z - ct)  with bk = 1 
and a / L  = 0.01. 

- 

1.5 wavelengths for a headless flagellum. The reason for this is made evident in figure 7 
which is a plot of I Omax) versus n. This quantity indicates the relative effect of pitching 
on the translational velocities in the local co-ordinate system. The large value of ups 
a t  n = 0.75 is mitigated by the correspondingly high value of 18maxl. Conversely, the 
maximum in upz at n = 1.5 is essentially unchanged in the fixed system, since a t  that 
point 18maXl is quite small. The variation in OPT (not shown) also displays a marked 
variation with n and, within the range n = 0.75 to n = 2.0, a maximum occurs close to 
n = 0.9 (Up,/c = 0.029). The bias in Up, is caused by the small temporal asymmetry 
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in Up, (introduced by the far-field contribution) which manifests itself in the fixed 
reference system. Thus it appears that if the object of a flagellum (with bk = 1, no 
head, and a / L  = 0.01) is to traverse a given straight line in the minimum time, it 
should deform its wave form into approximately 1.0 to 1.5 wavelengths, all other 
quantities notwithstanding. 

Figure 8 shows the variation of both the power output and propulsive efficiency 
with the number of wavelengths for a headless flagellum. The power output exhibits 
a maximum a t  approximately n = 1 which is probably related to the coincident 
maximum in up=. Rather than the power output alone, a more appropriate measure of 
the hydrodynamically optimum number of wavelengths is given by the propulsive 
efficiency 7. This quantity shows a maximum at n = 1.25. Both the non-dimensional 
power, of the form l?/,uc2h and the parameter K [equation (4.1 b ) ]  increase mono- 
tomically with increasing n. 

The effect of varying the number of wavelengths on a flagellum with an interacting 
head or with a non-interacting head is also shown in figures 5-7. In  the latter case, 
the equilibrium conditions are modified as in $ 2 ,  but the far-field mutual velocity 
interaction between the tail and head is not included. The results for the x component 
of propulsive velocity (figure 5) are qualitatively similar to what might be expected, 
in light of the head analysis discussed in § 3. That is, the effect of a non-interacting head 
is generally to reduce the propulsive velocity of the body, though not as drastically as 
an interacting head does. An interesting phenomenon occurs between n = 1 and 
n = 1.25, where the body with a head takes on velocity almost equal to that of the 
headless flagellum. The significance of this result is made evident in figure 6. In  the 
fixed system, the flagellum with a head has a higher propulsive velocity than the head- 
less body up to approximately 1.0 wavelengths. At this point, the curves for upx cross, 
and headless body swims faster. The reason for this curious behaviour can be seen in 
figure 7. Between n = 0.75 and approximately n = 1.25, the headless flagellum pitches 
significantly more than those with heads. Thus, even though the velocity in the moving 
co-ordinate system may be smaller for the body with a head, the velocity in the fixed 
reference frame can be larger owing to more moderate pitching. For values greater than 
n = 1.0, the reduced pitching no longer compensates for head drag, and the headless 
flagellum has a higher velocity. The presence of a head can be thought of as producing 
two competing effects: reduced pitching at small values of wavelength, and increased 
drag. 

Since the difference between the curves in figure 6 may lie within the error associated 
with the head model (see 5 3) calculations for a flagellum with a head of intermediate 
radius (a,/L = &) were made. These results also indicated a crossover in propulsive 
velocity, but the point was shifted slightly to the right. Therefore, it does not appear 
as if this phenomenon is artifactual. An additional point of interest is that while the 
headless flagellum exhibits a maximum in power output a t  approximately n = 1, the 
power outputs of the flagella with a head decline monotonically with n(n 3 0-75). 

The effect of varying the amplitude- wavelength ratio bk (=  27rb/h) between 0.1 
and 1.5 was investigated for a headless, sinusoidal travelling wave with n = 1 and 
a l L  = 0-01. The variation of upx, shown in figure 9, exhibits the sigmoid shaped 
variation also found by Hancock (1953) and Pirroneau BE Katz (1974). The maximum 
pitching anglp also increases monotonically with bk as does the power output. In  
figure 10 the propulsive efficiency displays a maximum in the region of bk = 1.25, well 

20 FLY 97 
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FIGURE 9. Time-averaged X component of velocity (onx) in the fixed syst,em as t* function of 
bk for a headless flagellum of shape given by y = b sin k(rc - c t )  and containing one wavelength 
(n  = 1) with a / L  = 0.01. 

FIGURE 10. Time-averaged power output ($) and propulsive efficiency (7) as a function of bk for a 
headless flagellum of shape given by y = b sin k(s - ct)  and containing one wavelength (n = 1)  
with a/L = 0.01. 

within the physiological range. The power output, also shown in figure 10, increases 
monotonically with bk.  The results for n = 2 (not shown) are qualitatively similar to 
those for one wavelength. 

To estimate the effect of the radius ratio the representative archetypal wave form 
(bk = 1, n = 1,  no head) was chosen for study. The results for three values of radii are 
shown in table 2. A 100 yo increase in a/L, from 0-01 to 0.02, decreases Upx by 17 yo, 
increases the power output by 13 yo, and decreases the efficiency by yproximately 
36 yo. If the radius ratio is decreased by 50 %, Dpx increases by 5 %. I? decreases by 
24 %, and the efficiency increases by 55 yo. The change in magnitude of gax between 
a / L  = 0-01 and 0.02 for a one wavelength flagellum is about twice as great as was 
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Radius 
( a m  Ullx/f L UllYlf L l % J  Z h f  2L3 P L q d Z  
0.005 - 0.1 03 0.025 0.478 0.623 0.017 
0.01 - 0.098 0.023 0.450 0.818 0.01 1 
0.02 - 0.081 0.021 0.494 0.928 0.007 

TABLE 2. Radius variation 

found for a change from a /A  = 0-01 to a./A = 0.02 for the infinite flagellum (see $ 3 ) .  
The velocity decreases with increasing a / L  because the ratio CN/CL is reduced; 
however, the power output increases because the absolute values of the resistance 
coefficients are increased. The reverse occurs for a decrease in the radius. 

Wave forms given by a(s, t )  
For non-periodic wave-form shapes of physiological interest, the representation given 
by (2.7) is used. Here the natural length scale is L rather than A. Similarly, the phase 
speed, as measured along the curved flagellum, q or the beat frequency f are used to 
scale quantities involving the time dimension, rather than c. We have chosen the 
expression 

a(s,  t )  = a,a(s) cos ~T[s/A(s) - f (s) t ]  (4.2) 

to generate the wave forms in this subsection. 
Before considering these cases, it is desirable to link the preceding parametric studies, 

based on a sinusoidal wave form in x, with the variable amplitude and wavelength 
studies which follow. The equationa(s, t )  = a, cos 2n(s/A - f t )  produces a good approxi- 
mation to a sine wave in the x, y plane for bk 1.  Specifically, for a, z 5 1 O an equivalent 
bk of 1.003 is found, and for a, = 45' (the maximum slope angle of a sinusoidal wave 
form with bk = 1) the resulting curve has a bk equivalent to 0.861. (For a, = 51", the 
average deviation between the two curves is 3.8 yo of the maximum amplitude of the 
sine wave; the maximum deviation is 7.2 %.) When this expression for a is inserted 
into the model, with these two values of a,, results are obtained which bracket those 
found for the archetypal sinusoidal wave form considered previously. For example 
the archetypal value for upx/fL is - 0.098. This compares with values of - 0.102 for 
01, = 51' and - 0.089 for a, = 45". 

Spermatozoa of several mammalian species, under certain circumstances, produce 
waveforms exhibiting an amplitude envelope with grows with distance from the head- 
tail junction (e.g., human, Katz, Mills & Pritchett 1978; bull, Rikmenspoel 1965; ram, 
Denehy 1975; guinea pig and hamster, Katz, Yanagimachi & Dresdner 1978.) To 
model this behaviour analytically, and to evaluate the resulting propulsive motion, we 
have employed (4.2) with A and f constant, s E [ O ,  A = L],  and a(s) = p". The maximum 
slope angle at  s = 0 (i.e. a,) was chosen to be 5.1°, and the maximum amplitudes (at 
s = L) were 0.5, 1 and 1.5 times the peak amplitude of the constant-amplitude wave 
form generated with a, = 51". Thus, p takes on the values 5, 10 and 15, respectively. 
Composite plots of the resulting wave-form shapes, at  four representative times, are 
shown in figure 11. Figure 12 displays the results for these wave forms with a head 
(a,/L = A). The values for upx are substantially less than that of the a. = 51 O constant 

20-2 
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FIGURE 11. Wave forms with variable amplitude. (a)  /J’ = 5 ;  ( b )  p = 10; (c) /J’ = 15. 

amplitudewaveform( - 0*102).EvenwithP = 15, thevelocityislessthanathird of this 
comparative value. (It is roughly equivalent to a sinusoid with bk = 0.5,  see figure 9.) 
The total power output shows a similar reduction in level, as does the propulsive 
efficiency. The magnitude of gpy/ fL  is less than or equal to 0.02 in all cases. 

In  addition to variable amplitude, flagellated organisms may also exhibit variable 
wavelength. [Human sperm in seminal plasma (Mills 1978) and cervical mucus (Katz, 
Mills & Pritchett 1978) exhibit both these properties.] Since q = Af, in general, if 
A = A(s) then either p orf can be constant while the other parameter varies along the 
flagellum. Each of these specifications, constant phase speed or constant frequency, 
results in a different expression for a(s ,  t )  and, therefore a distinctive beat pattern, 
From (4.2) the constant frequency wave forms are generated by 

CL = a0r(s )  cos 2~[s /A(s)  -ft] 

a = CL,V(~)  cos 2 ~ [ ( s  - pt)/A(s)]. 

(4.3) 

and the constant phase speed wave forms by 

(4.4) 

Before a comparison of the propulsive characteristics of these two representations 
can be made, the ‘frequency ’ of the beat cycle in the case of constant phase speed must 
be examined. In this case, since each tail point can have a unique period of oscillation, 
a single beat frequency may be undefinable. However, a special set of circumstances 
can be assumed in order to avoid this situation. The wavelength is made to change 
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FIGUSE 12. Time-averaged fixed system X-component of propulsive velocity ( o D x ) ,  power output 
( B )  and propulsive efficiency (7) as functions of /? for the wave forms shown in figure 11. 
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FIGURE 13. Wave forms with variable amplitude and wavelength a t  four representative 
time instants. [a)  Constant frequency; (b )  constant phase speed. 

rapidly from one constant value ( A / L  = $) to another ( A / L  = $) at the midpoint 
s /L  = 0-5. Thus the frequency of the first portion of the tail is half that of the second 
portion. The change-over must encompass an extremely small region, since the points 
in the transition zone which have not returned to their original position after the beat 
period, will adversely affect the position of points distal to themselves through (A 4). 
The functions a ( s )  and h ( s )  were taken as 

a,a(s) = 5.1°(15)5, R(s) = 1 -0.2125tan-1[1000(~-0-5)]. (4.5) 

Figure 13 shows the constant frequency and constant phase speed wave forms, a t  four 
representative times. At several times instants the transition point is clearly visible. 
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Case f i , d f L  D v x h  uvX/fAh 1e-l 3 , f p j 2 ~ 3  */pq2L 3 j p f ; ~ 3  pLi7&j3 
Constant -0.020 N.A. -0.020 0.261 0.125 N.A. 0.125 0.0032 
frequency 

phase speed 
Constant N.A. -0.037 -0.037 0.287 N.A. 0.368 0.368 0.0037 

h-.A. = not applicable. 

TABLE 3. Variable amplitude and wavelength wave forms, fa = average frequency. 

For the constant frequency case the natural scaling parameters are ,a, L and q. For the 
constant phase speed formulation an average frequency can be defined for purposes of 
comparison. 

The results for these two cases are shown in table 3. By any means of comparison, 
the constant phase speed wave form swims roughly twice as fast as that with constant 
frequency. The power output is also several times larger for the constant phase speed 
case. The propulsive efficiency indicates a moderate advantage for the constant phase 
speed case. The maximum pitching angle is approximately the same in both cases. The 
values for upp (not tabulated) are all 10 % or less of the corresponding upx value. 

General discussion of results 

W'hen the number of wavelengths on the sinusoidal wave form is varied, it has been 
found that certain values of n are less advantageous to forward propulsive movement 
than others. In  the fixed reference system, values of wavelengths in the vicinity of 
1.0 and 1.5 appear preferable. The propulsive efficiency also shows a maximum in 
this region. (As figure 10 indicates a bk in the region of 1.25 is optimum, at  least for 
n = 1. ) Since the movement characteristics of many uniflagellar micro-organisms, with 
reasonably small heads and bk E 1, fall within this region of n (Brennen & Winet 1977), 
it is tempting to conclude that this phenomenon is the result of an attempt to optimize 
propulsive movements. Such teleological speculation should be tempered by the fact 
that the wave form of a flagellated organism is determined by numerous physiological, 
morphological and environmental factors, only a few of which have been included in 
the present study. 

It was also found that up to approximately n = 1.0, a body with a head has a larger 
average forward propulsive velocity than the headless flagellum. This interesting 
phenomenon can be attributed to the effect of the head in reducing pitching within this 
range of wavelengths. However, one must bear in mind that the interactive effect of 
the head is only approximately modelled, and the analytic sinusoidal wave form is 
representative and not descriptive. Consequently, the absolute values associated with 
the differences between the body with and without a head, and the location of the 
cross-over point, are only indicative. The principal conclusions to be drawn are that 
depending upon the situation, the cell body can either reduce or augment the forward 
propulsive velocity, and that the complete equilibrium conditions must be applied in 
order to realize this effect. It should be noted, however, that the presence of a head does 
not uniformly diminish pitching. Figure 7 shows that for n = 1.5 the headless flagellum 
actually pitches less. This illustrates the fact that the head modifies the equilibrium 
matrix (2.22) in a manner which allows for a greater range of possible values of s1. 
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Case Ovx/fL i 7 v Y / f L  pmml Z/pfZL3 pLO,/Z 
Present theory, no head - 0.098 0.023 0.450 0.818 0.012 
Unidirectional propulsion, no - 0.137 0 0 0.982 0.019 

Present theory, head - 0.100 0.01 2 0.271 1.132 0-009 
head 

Unidirectional propulsion, -0.123 0 0 1-163 0.103 
head 

TABLE 4. Unidirectional propulsion (bk = 1 ,  n = 1, a/L = 0.01, aH/L = -&). 

Case O,x/f L t f v  Y/fL lemaxl 3 / p f W  

Fresent theory, n = 0.5 - 0.049 0.000 0-638 0.570 
Lighthill, n = 0.5 - 0.06 1 0.000 0.633 0.525 
Present theory, n = 1.0 - 0.098 0.023 0.450 0.818 
Lighthill, n = 1.0 - O . l l !  0.026 0.472 0.771 
Present theory, n = 1.5 - 0.083 0.000 0.048 0.483 
Lighthill, n = 1.5 - 0.091 0~000 0.028 0.453 

TABLE 5. Comparison with Lighthill's (1976) theory (bk = 1 ,  a / L  = 0.01). 

Finally it is important to emphasize the significant differences between the two 
variable wavelength cases. For the analytic shapes shown in figure 13 the constant 
phase speed flagellum has roughly twice the average forward propulsive velocity of the 
constant frequency wave form. Thus, great care should be taken both in the hydro- 
dynamic modelling of actual flagellar beat shapes, and in the acquisition and inter- 
pretation of experimental data. 

5. Comparison with other results 
Several alternative theories and problem specifications are available for comparison 

and evaluation of the results presented in this work. In  $3 ,  comparison was made with 
Hancock ( 1  953) and Shen et al. (1975) for the large amplitude sinusoidal wave form of 
infinite length; here only finite flagella are considered. 

If the propulsive motion of an organism is assumed to be unidirectional, the analysis 
is somewhat simplified. Table 4 shows the effect of this simplification on the complete 
theory for selected movement characteristics. It is seen that when the influence of 
pitching and transverse propulsive motion is neglected, the propulsive velocity is over- 
estimated by about 40 yo for the headless flagellum with a sinusoidal travelling wave 
form, bk = 1,  n = 1 and a / L  = 0.01 (23 % with a head, a H / L  = 2%). Concomitantly, 
the power output is also increased by 20 yo without a head and 3 yo with a head. The 
propulsive efficiencies are all overestimated by like amounts. 

Recently, Lighthill (1 976) has developed resistance coefficients which more accu- 
rately account for the far-field contribution than the original Gray & Hancock (1955) 
expressions. These improved coefficients are 

C, = rinP/[in (26/a) + 0.51, C, = 2np/ln (26/a). (5.1) 

Note that this is the same set of expressions given in (2.14) except for 0.5 in C,. As 
noted previously, Lighthill also suggested that 8/14 be assigned the value of 0.08937. 



616 R. D .  Dresdner, D .  F .  Katz and S .  A .  Berger 

-3 ' I I I 1 

-0'5 t 

-2-0 5 

0 0.25 0.50 0.75 1 .oo 
SIL 

FIGURE 14. Spacial variation of fN, fL and MB for a headless flagellum of shape given by 
y = bsinkx with bk = 1, n = 1, and a f L  = 0.01. __ , present theory; - - - , zeroth-order 
theory with resistance coefficients of Lighthill (1976). 

A comparison between the zeroth-order solution based on (5.1) and the full iterative 
procedure has been carried out on a sinusoidal waveform with bk = I, a / L  = 0.01, and 
three values for the number of wavelengths. Generally, as seen in table 5 ,  the use of the 
Lighthill coeecients somewhat overestimates the values of gpx and gpEr, and under- 
estimates 2. A similar comparison for the variable amplitude s-generated wave form 
discussed in 3 4 with /3 = 15 was also carried out with qualitatively very similar results. 
For example, with the improved resistance coefhients, is approximately 14 % 
higher for the headless flagellum and 6 yo higher for a body with a head. Figure 14 
shows the spatial variations in the normal and tangential force per unit length and the 
bending moment on the tail for the sinusoid with n = 1.  The agreement with the 
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iterative solution is remarkably close in all cases. On the basis of this preliminary 
comparison, it appears that the coefficients introduced by Lighthill offer a simple and 
fairly accurate means of estimating the propulsive motion of an isolated, slender micro- 
organism. 

Pironneau & Katz (1974) examined the motion of an unconstrained, large amplitude 
sawtoothed wave form with an analysis based upon the resistance coefficients given by 
(2.14). Qualitatively, th_ese results are very similar to those found in the present study. 
Their curves for opx, 2, and ,uLUi,/& as functions of bk illustrate the same general 
trends as shown in figures 9 and 10. 

More recently Johnson (1977) has developed a theory and technique for determining 
the Stokes flow past slender bodies in general motion. Basically, the method involves 
the solution, by an expansion technique, of an integral equation similar to (2.3). Local 
curvature effects are accounted for by the inclusion of higher-order viscous singularities 
such as rotlets and stresslets. In  5 3 a comparison between Johnson’s theory and the 
present study for a torus was examined. The results showed quite good agreement 
between the two methods (within 5 %). Johnson also considered the unidirectional 
translation of flagellar-like wave forms representative of the spermatozoa of two 
invertebrate species. Since the equilibrium conditions were not imposed, the single 
component of Up was specified rather than determined simultaneously with the force 
per unit length on the body. The propulsive velocity of a self-propelling organism can be 
determined by treating this quantity as an independent parameter and determining 
the value a t  which the total force on the body is zero. The approximate effect of a 
spherical head on the flagellar motion is also included in Johnson’s model. His method 
of analysis is somewhat more rigorous than the head procedure employed here and, 
therefore, may be more accurate. Johnson found that the average thrust produced by 
the flagellum (indicative of the propulsive velocity) for a headless body showed 
‘favourable’ regions as a function of the number of wavelengths. The pattern is 
similar to that shown in figures 5 and 6, and discussed in 5 4. Qualitative differences 
between the two techniques may be due, in part, to the fact that Up, and R are taken as 
identically zero in Johnson’s analysis. I n  addition, there are dissimilarities in the wave- 
form shapes. When compared to  the experimentally determined propulsive velocities 
of the self-propelling spermatozoa modelled by Johnson, his theory overestimated these 
values. I n  addition to the various possible reasons for this discrepancy given by Johnson 
(all of which seem reasonable), a substantial portion of the overestimation may have 
been due to not having applied the full system of equilibrium equations (see above). 
This would especially seem likely if the sperm pitched considerably. Also, as pointed 
out by Johnson, the analytic wave form did not accurately model the spermatozoa’s 
shape near the proximal end of the flagellum. If the amplitude in this region of the 
actual spermatozoa were reduced, owing in part perhaps, to the presence of a head, 
the resulting propulsive velocity of the organism might be significantly decreased 
(see 5 4). 

Of course, the ultimate test of any new theory or method is comparison to pertinent 
experimental results. At this time, unfortunately, no adequate information on the 
detailed movements of a flagellated organism is available. For this reason, only repre- 
sentative, analytic wave forms have been used. The extremely difficult problems in 
acquiring data on the time-varying shape and velocity distributions along the tail 
length are discussed extensively in Mills (1978). The time-averaged propulsive 
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velocities of numerous micro-organisms have been compiled by various researchers 
and the results presented herein lie well within the wide variation they exhibit (see, 
e.g., the extensive tabulation in Brennen & Winet 1977; Overstreet & Katz 1977). 

6. Concluding remarks 
Our primary purpose has been to develop an accurate and practical method for 

mathematically modelling the fluid mechanical behaviour of motile, uniflagellar micro- 
organisms. The method has been systematically used to investigate the propulsive 
movement characteristics of a variety of representative beat shapes. Several future 
applications and extensions are foreseeable. These include the determination of the 
flow field about the organism, allowance for axial taper, and consideration of general 
three-dimensional beat shapes (or special cases, such as circular helices). A largely 
unexplored area, to which the iterative procedure might be profitably applied, is the 
fluid mechanics of non-isolated flagellates. 

This work was partially supported by the National Institutes of Health, grant 
HD 8018 and the World Health Organization, contract 75179.  One of us (R. D. D.) 
acknowledges the support of an NIH Biomedical Engineering Traineeship 

Appendix. Co-ordinate systems and wave-form representations 
In previous studies of the fluid mechanics of self-propelling slender bodies, several 

representations for the moving co-ordinate system have been developed. The first 
system was introduced by Taylor (1951) .  Among its advantages is that in this system 
an analytic expression for the beat velocity of a sinusoid can be easily derived in terms 
of an elliptic integral. Its major drawback, however, is its inapplicability to move 
general travelling wave forms. This system will not be reviewed here. Wave forms of 
the type y = y (x ,  t )  can be analysed by using a method introduced by Keller & Rubinow 
(1976) .  They applied it only to sinusoids, in which case analytic expressions for the 
beat velocity can be derived, but it is easily extended to more general flagellar shapes. 
A third representation, used by Brokaw (1970)  and Shack et al. (1974)  will be referred 
to as the head co-ordinate system. It is adaptable to a wide variety of wave forms, but 
necessitates numerical computations for the beat velocity. 

We first consider planar wave forms given by y = y(x , t ) .  In  this case the x CO- 

ordinate of a point on the tail is related to the s co-ordinate along the body centre-line 
by the integral 

s[x(t), t ]  = jod" [ 1 + ( g ) ' ] % X f .  

Differentiating (A 1)  with respect to t ,  and noting that as/& = 0 for an inextensible 
flagellum, gives 
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For the special case of a sinusoid the integral in (A 2) can be evaluated analytically. 
In this case the beat velocities are given by 

ax = c - c [ (  1 + b2k2 cos2ckt) / l+ b2k2 cos k ( x  - ct)]*, 

Gv = bk(c - a,) cos k(x - c t ) .  

(A 3a)  

(A 3 b )  

For more general wave forms (A 2) must be solved numerically. 
In  the head system, the wave form is defined by a travelling wave along s rather 

than x, and is given by a = a(s,  t ) .  The position co-ordinates are described parametri- 
cally by the integrals 

x(s,  t )  = Jos cos a(s’, t )  ds’, y(s, t )  = s,” sin a(d ,  t )  ds’. (A 4) 

Since this is a natural Lagrangian representation, the beat velocity is simply the time 
derivative of (A 4); therefore, 

aol aa 
sin tl(s’, t )  - ds’, Gg = s,” cos a(s ’ ,  t )  - ds’ 

at at 

It can be seen that the head (s = 0) is always located at the point (0,O). Since the 
beat velocity of this point is identically zero, the total velocity of the head is inter- 
preted as the propulsive velocity of the organism. This is not the situation for the pro- 
pulsive velocity resulting from a mean system representation. Thus, instantaneous 
comparisons between propulsive velocities of the two systems cannot be made directly. 
However, since the velocity of the point s = 0 about the point x = 0, in the mean 
system, is periodic in time (for the case of periodic travelling waves), time-averaged 
quantities may be compared. 

Note 
Since the completion of this study, two papers have appeared which also present 

improved mathematical theories of the hydrodynamics of the propulsion of uni- 
flagellar micro-organisms. In  both cases the mathematical methodologies have many 
similarities to that of the present paper. However, the applications are different in 
that our emphasis is directed towards the movement of mammalian spermatozoa. 
Higdon (1979) has developed a fluid mechanical model and solution technique very 
similar to the present study. The primary difference is that Higdon includes the exact 
singularity system necessary to obtain the no-slip velocity boundary condition on a 
spherical cell body. He has conducted several parameter studies on sinusoidal wave 
forms (the only beat shapes considered), some of which are identical to those in this 
paper. Both qualitatively and quantitatively the results are quite close. For example, 
for a headless flagellum with n = 1 and a / L  = 0.01, the variation of IU,l/c with bk 
appears to be within about 5 yo, and the efficiency (which is defined slightly differently) 
peaks in the range 1 2 bk 2 1.25 for both studies. Although not specifically mentioned, 
it appears (from figure 12 in Higdon) that the organism translates with a small lateral 
bias. For a flagellum with a H / L  = 1/36 and n = I ,  graphical interpretation of his data 
suggests a propulsive velocity slightly greater value than found by us. In looking a t  the 
accuracy of the Lighthill force coefficients, Higdon has also shown that their use some- 
what overestimates the propulsive velocity and underestimates the power output. 
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In the second paper, Johnson & Brokaw (1979) have applied the slender body 
theory of Johnson (1977) to wave forms generated by a mathematical model of 
flagellar contraction (Brokaw 1972). These beat shapes have a relatively constant 
wavelength (1.33 2 n 2 2 )  and a moderately increasing amplitude similar to some 
non-mammalian spermatozoa. The purpose of the paper was to test the accuracy of 
resistive force theory for such realistic wave forms. Johnson & Brokaw demonstrated 
that for a headless flagellum the Lighthill coefficients produce results indistinguishable 
from the more accurate theory, as was borne out in our study. The presence of a cell 
body (a,/L = 2b) reduced the agreement somewhat. The temporal variation of Ch and 
CL, shown in Johnson & Brokaw, is also quite similar to our results. 

Since both Higdon and Johnson & Brokaw, when considering flagella with small cell 
bodies, obtained very similar results to the present study, it seems likely that the 
reduction in accuracy associated with our approximate head model does not signifi- 
cantly alter our results concerned with cell bodies of relatively small radii. 
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